On-Ground Retracking to Correct Distorted Waveform in Spaceborne Global Navigation Satellite System-Reflectometry

نویسندگان

  • Feng Wang
  • Dongkai Yang
  • Weiqiang Li
  • Wei Yang
چکیده

Spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) has been the research focus of Earth observation because of its unique advantages; however, there are still many challenges to be resolved. The reduction of the impact of the satellite motion on the GNSS-R waveform is the one of key technologies for spaceborne GNSS-R. The proposed delay retracking methods in existing literatures require too many instrument resources and too much priori information to refresh correlation window on each coherent integration time period. This paper aims to propose an on-ground alternative in which less frequency tracking refresh on board is needed. The model of dynamic delay waveform, which is expressed as the convolution of the pure waveform and the point spread function, are described. Based on this, the new methodology, which utilizes the least squares fitting to make the residual error between the dynamic model and measured waveform minimum, is employed to reconstruct the pure waveform. The validity of proposed method is verified using UK-DMC, UK-TDS-1 and simulated data. Moreover, the performances of sea surface height and wind speed retrieval using retracked and non-retracked waveforms are compared. The results show that (1) the MSEs between aligned and retracked waveform reduce to 0.026 and 0.044 from 0.110 and 0.156 between aligned and non-retracked waveform with the TRP of 1 s and 3 s for UK-DMC data, and for UK-TDS-1 data, the MSEs decrease from 161.02 and 227.34 to 70.10 and 61.80; (2) the standard deviation of sea surface height using retracked waveform is lower 5 times than the one using non-retracked waveform; (3) the retracked waveform could lead to a better measurement performance in wind speed retrieval. Finally, the relationship between the performance of retracking and Signal-to-Noise Ratio (SNR) is analyzed. The results show that when the SNR of the waveform is lower than 3 dB, the retrieval accuracies rapidly become worse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Determination of Sea Surface Heights Close to the Australian Coast from ERS-2 Satellite Radar Altimetry

The homogeneous and repeated data coverage over coastal regions from satellite radar altimetry is one important data source for oceanographic and geodetic applications. However, the sea surface heights (SSH) extracted from the altimeter data are often in error close to the coast, due in part to the complex nature of echoes returned from rapidly varying coastal topographic surfaces (both land an...

متن کامل

Spatiotemporal Evaluation of GNSS-R Based on Future Fully Operational Global Multi-GNSS and Eight-LEO Constellations

Spaceborne GNSS-R (global navigation satellite system reflectometry) is an innovative and powerful bistatic radar remote sensing technique that uses specialized GNSS-R instruments on LEO (low Earth orbit) satellites to receive GNSS L-band signals reflected by the Earth’s surface. Unlike monostatic radar, the illuminated areas are elliptical regions centered on specular reflection points. Evalua...

متن کامل

First spaceborne observation of sea surface height using GPS-Reflectometry

An analysis of spaceborne Global Positioning System reflectometry (GPS-R) data from the TechDemoSat-1 (TDS-1) satellite is carried out to image the ocean sea surface height (SSH). An SSH estimation algorithm is applied to GPS-R delay waveforms over two regions in the South Atlantic and the North Pacific. Estimatesmade fromTDS-1 overpasses during a 6month period are aggregated to produce SSHmaps...

متن کامل

The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry

The interferometric Global Navigation Satellite System Reflectometry (iGNSS-R) exploits the full spectrum of the transmitted GNSS signal to improve the ranging performance for sea surface height applications. The Inter-Modulation (IM) component of the GNSS signals is an additional component that keeps the power envelope of the composite signals constant. This extra component has been neglected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017